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Using Boltzmann machines to initialize 

backpropagation



Some problems with backpropagation

• The amount of information that each training case 
provides about the weights is at most the log of the 
number of possible output labels.
– So to train a big net we need lots of labeled data.

• In nets with many layers of weights the backpropagated 
derivatives either grow or shrink multiplicatively at each 
layer. 
– Learning is tricky either way.

• Dumb gradient descent is not a good way to perform a 
global search for a good region of a very large, very non-
linear space. 
– So deep nets trained by backpropagation are rare in 

practice. 



A solution to all of these problems

• Use greedy unsupervised learning to find a sensible set of 
weights one layer at a time. Then fine-tune with 
backpropagation.

• Greedily learning one layer at a time scales well to really 
deep networks.

• Most of the information in the final weights comes from 
modeling the distribution of input vectors. 
– The precious information in the labels is only used for 

the final fine-tuning.
• We do not start backpropagation until we already have 

sensible weights that already do well at the task.
– So the fine-tuning is well-behaved and quite fast.



Modelling the distribution of digit images

2000 units

500 units 

500 units 

28 x 28 
pixel     
image

The network learns a density model for 
unlabeled digit images. When we generate 
from the model we often get things that look 
like real digits of all classes.  

More hidden layers make the generated 
fantasies look better (YW Teh, Simon Osindero).

But do the hidden features really help with 
digit discrimination? Add 10 softmaxed units 
to the top and do backprop.

The top two layers form a restricted 
Boltzmann machine whose free energy 
landscape should model the low 
dimensional manifolds of the digits.



Results on permutation-invariant MNIST task

• Very carefully trained backprop net with      1.53% 
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf)                       1.4%

• Generative model of joint density of             1.25% 
images and labels (with unsupervised fine-tuning)

• Generative model of unlabelled digits          1.2% 
followed by gentle backpropagtion

• Generative model of joint density                 1.1% 
followed by gentle backpropagation



Learning Dynamics of Deep Nets
the next 4 slides describe work by Yoshua Bengio’s group

Before fine-tuning After fine-tuning



Effect of Unsupervised Pre-training
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Erhan et. al.    AISTATS’2009 



Effect of Depth
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Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were 
generated this way, it 
would make sense to try 
to go straight from 
images to labels.  
For example,  do the 
pixels have even parity?

If image-label pairs are 
generated this way, it 
makes sense to first learn 
to recover the stuff that 
caused the image by 
inverting the high 
bandwidth pathway.

high 
bandwidth

low 
bandwidth



An early use of neural nets (~1989)

• Use a feedforward neural net to convert a window 
of speech coefficients into a posterior probability 
distribution over  short pieces of phonemes (61 
phones each with 3 pieces)
– To train this net we need to know the “correct” 

label for each window, so we need to bootstrap 
from an existing speech recognition system.

• The trained neural net produces a posterior 
distribution over phone pieces at each time.
– We feed these distributions  to  a decoder which 

finds the most likely sequence of phonemes. 



How to make the phone recognizer 
work much better 

• Train lots of big layers, one at a time, without 
using the labels.

• Add  183-way softmax over labels as the final 
layer.

• Fine-tune with bckpropagation on a big GPU 
board for several days.



A very deep belief net for phone recognition

11 frames of filter-
bank coefficients

2000 binary hidden units 

2000 binary hidden units 

2000 binary hidden units 

2000 binary hidden units 

183 labels
Mohamed, Dahl & Hinton (2011)

not pre-trained

Many of the 
major speech 
recognition 
groups (Google, 
Microsoft, IBM) 
are now trying 
this approach.



Deep Autoencoders

• They always looked like a really nice way to do 
non-linear dimensionality reduction:
– They provide mappings both ways
– The learning time is linear (or better) in the 

number of training cases.
– The final model is compact and fast.

• But it turned out to be very very difficult to 
optimize deep autoencoders using backprop.
– We now have a much better way to optimize 

them.



The deep autoencoder

784  1000  500   250  
30 linear units

784  1000  500   250

If you start with small random weights it will not 
learn.  If you break symmetry randomly by using 
bigger weights, it will not find a good solution.
So we train a stack of 4 RBM’s and then “unroll” 
them.  Then we fine-tune with gentle backprop.
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A comparison of methods for compressing 
digit images to 30 real numbers.

real              
data

30-D       
deep auto

30-D logistic 
PCA

30-D         
PCA



A very deep autoencoder for synthetic 
curves that only have 6 degrees of freedom 

Data      0.0

Auto:6 1.5

PCA:6 10.3

PCA:30 3.9

squared 
error



An autoencoder for patches of real faces

• 6252000100064130   and back out again

logistic unitslinear linear

Train on 100,000  denormalized face patches 
from 300 images of 30 people. Use 100 epochs 
of CD at each layer followed by backprop 
through the unfolded autoencoder.

Test on face patches from 100 images of 10 new 
people.



Reconstructions of face patches from new people

Data

Auto:30 
126

PCA:30 
135



64 of the hidden units in the first hidden layer



How to find documents that are similar to a 
query document

• Convert each document into a “bag of 
words”.
– This is a vector of word counts 

ignoring the order. 
– Ignore stop words (like “the” or “over”)

• We could compare the word counts of 
the query document and millions of other 
documents but this is too slow. 
– So we reduce each query vector to a 

much smaller vector that still contains 
most of the information about the 
content of the document.
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How to compress the count vector 

• We train the neural 
network to reproduce its 
input vector as its output

• This forces it to 
compress as much 
information as possible 
into the 10 numbers in 
the central bottleneck.

• These 10 numbers are 
then a good way to 
compare documents.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons

250 neurons

250 neurons

10

input 
vector

output 
vector



The non-linearity used for reconstructing 
bags of words

• Divide the counts in a bag of words vector by N, where N 
is the total number of non-stop words in the document.
– The resulting probability vector gives the probability of 

getting a particular word if we pick a non-stop word at 
random from the document.

• At the output of the autoencoder, we use a softmax.
– The probability vector defines the desired outputs of 

the softmax. 
• When we train the first RBM in the stack we use the 

same trick. 
– We treat the word counts as probabilities, but we 

make the visible to hidden weights N times bigger 
than the hidden to visible because we have N 
observations from the probability distribution.



Performance of the autoencoder at 
document retrieval

• Train on bags of 2000 words for 400,000 training cases 
of business documents.
– First train a stack of RBM’s. Then fine-tune with 

backprop.
• Test on a separate 400,000 documents. 

– Pick one test document as a query. Rank order all the 
other test documents by using the cosine of the angle 
between codes. 

– Repeat this using each of the 400,000 test documents 
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the 
proportion that are in the same hand-labeled class as the 
query document. Compare with LSA (a version of PCA).



Proportion of retrieved documents in same class as query

Number of documents retrieved



First compress all documents to 2 numbers using a type of PCA                               
Then use different colors for different document categories



First compress all documents to 2 numbers.                         
Then use different colors for different document categories


