
Neural Networks

Lecture 21
Using Boltzmann machines to initialize

backpropagation

Some problems with backpropagation

• The amount of information that each training case
provides about the weights is at most the log of the
number of possible output labels.
– So to train a big net we need lots of labeled data.

• In nets with many layers of weights the backpropagated
derivatives either grow or shrink multiplicatively at each
layer.
– Learning is tricky either way.

• Dumb gradient descent is not a good way to perform a
global search for a good region of a very large, very non-
linear space.
– So deep nets trained by backpropagation are rare in

practice.

A solution to all of these problems

• Use greedy unsupervised learning to find a sensible set of
weights one layer at a time. Then fine-tune with
backpropagation.

• Greedily learning one layer at a time scales well to really
deep networks.

• Most of the information in the final weights comes from
modeling the distribution of input vectors.
– The precious information in the labels is only used for

the final fine-tuning.
• We do not start backpropagation until we already have

sensible weights that already do well at the task.
– So the fine-tuning is well-behaved and quite fast.

Modelling the distribution of digit images

2000 units

500 units

500 units

28 x 28
pixel
image

The network learns a density model for
unlabeled digit images. When we generate
from the model we often get things that look
like real digits of all classes.

More hidden layers make the generated
fantasies look better (YW Teh, Simon Osindero).

But do the hidden features really help with
digit discrimination? Add 10 softmaxed units
to the top and do backprop.

The top two layers form a restricted
Boltzmann machine whose free energy
landscape should model the low
dimensional manifolds of the digits.

Results on permutation-invariant MNIST task

• Very carefully trained backprop net with 1.53%
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf) 1.4%

• Generative model of joint density of 1.25%
images and labels (with unsupervised fine-tuning)

• Generative model of unlabelled digits 1.2%
followed by gentle backpropagtion

• Generative model of joint density 1.1%
followed by gentle backpropagation

Learning Dynamics of Deep Nets
the next 4 slides describe work by Yoshua Bengio’s group

Before fine-tuning After fine-tuning

Effect of Unsupervised Pre-training

7

Erhan et. al. AISTATS’2009

Effect of Depth

8

w/o pre-training
with pre-trainingwithout pre-training

Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were
generated this way, it
would make sense to try
to go straight from
images to labels.
For example, do the
pixels have even parity?

If image-label pairs are
generated this way, it
makes sense to first learn
to recover the stuff that
caused the image by
inverting the high
bandwidth pathway.

high
bandwidth

low
bandwidth

An early use of neural nets (~1989)

• Use a feedforward neural net to convert a window
of speech coefficients into a posterior probability
distribution over short pieces of phonemes (61
phones each with 3 pieces)
– To train this net we need to know the “correct”

label for each window, so we need to bootstrap
from an existing speech recognition system.

• The trained neural net produces a posterior
distribution over phone pieces at each time.
– We feed these distributions to a decoder which

finds the most likely sequence of phonemes.

How to make the phone recognizer
work much better

• Train lots of big layers, one at a time, without
using the labels.

• Add 183-way softmax over labels as the final
layer.

• Fine-tune with bckpropagation on a big GPU
board for several days.

A very deep belief net for phone recognition

11 frames of filter-
bank coefficients

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

183 labels
Mohamed, Dahl & Hinton (2011)

not pre-trained

Many of the
major speech
recognition
groups (Google,
Microsoft, IBM)
are now trying
this approach.

Deep Autoencoders

• They always looked like a really nice way to do
non-linear dimensionality reduction:
– They provide mappings both ways
– The learning time is linear (or better) in the

number of training cases.
– The final model is compact and fast.

• But it turned out to be very very difficult to
optimize deep autoencoders using backprop.
– We now have a much better way to optimize

them.

The deep autoencoder

784  1000  500  250
30 linear units

784  1000  500  250

If you start with small random weights it will not
learn. If you break symmetry randomly by using
bigger weights, it will not find a good solution.
So we train a stack of 4 RBM’s and then “unroll”
them. Then we fine-tune with gentle backprop.

321 WWW

TTT WWW 321

4W

TW4

A comparison of methods for compressing
digit images to 30 real numbers.

real
data

30-D
deep auto

30-D logistic
PCA

30-D
PCA

A very deep autoencoder for synthetic
curves that only have 6 degrees of freedom

Data 0.0

Auto:6 1.5

PCA:6 10.3

PCA:30 3.9

squared
error

An autoencoder for patches of real faces

• 6252000100064130 and back out again

logistic unitslinear linear

Train on 100,000 denormalized face patches
from 300 images of 30 people. Use 100 epochs
of CD at each layer followed by backprop
through the unfolded autoencoder.

Test on face patches from 100 images of 10 new
people.

Reconstructions of face patches from new people

Data

Auto:30
126

PCA:30
135

64 of the hidden units in the first hidden layer

How to find documents that are similar to a
query document

• Convert each document into a “bag of
words”.
– This is a vector of word counts

ignoring the order.
– Ignore stop words (like “the” or “over”)

• We could compare the word counts of
the query document and millions of other
documents but this is too slow.
– So we reduce each query vector to a

much smaller vector that still contains
most of the information about the
content of the document.

fish
cheese
vector
count
school
query
reduce
bag
pulpit
iraq
word

0
0
2
2
0
2
1
1
0
0
2

How to compress the count vector

• We train the neural
network to reproduce its
input vector as its output

• This forces it to
compress as much
information as possible
into the 10 numbers in
the central bottleneck.

• These 10 numbers are
then a good way to
compare documents.

2000 reconstructed counts

500 neurons

2000 word counts

500 neurons

250 neurons

250 neurons

10

input
vector

output
vector

The non-linearity used for reconstructing
bags of words

• Divide the counts in a bag of words vector by N, where N
is the total number of non-stop words in the document.
– The resulting probability vector gives the probability of

getting a particular word if we pick a non-stop word at
random from the document.

• At the output of the autoencoder, we use a softmax.
– The probability vector defines the desired outputs of

the softmax.
• When we train the first RBM in the stack we use the

same trick.
– We treat the word counts as probabilities, but we

make the visible to hidden weights N times bigger
than the hidden to visible because we have N
observations from the probability distribution.

Performance of the autoencoder at
document retrieval

• Train on bags of 2000 words for 400,000 training cases
of business documents.
– First train a stack of RBM’s. Then fine-tune with

backprop.
• Test on a separate 400,000 documents.

– Pick one test document as a query. Rank order all the
other test documents by using the cosine of the angle
between codes.

– Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document. Compare with LSA (a version of PCA).

Proportion of retrieved documents in same class as query

Number of documents retrieved

First compress all documents to 2 numbers using a type of PCA
Then use different colors for different document categories

First compress all documents to 2 numbers.
Then use different colors for different document categories

